Introduction and Overview

Understanding ASTM International Test Procedures for Cement and Concrete - Staying Up to Standard

Anthony F. Bentivegna, Ph.D., P.E.

May 9, 2016

Personal Background

Anthony Bentivegna, PhD, PE

Laboratory Manager and CTLGroup-Qatar Liaison

- Manager of Testing Laboratories in Chicago, IL, USA
- Liaison for CTLGroup-Qatar Laboratory in Doha, Qatar
- PhD, University of Texas at Austin, Civil Engineering
- Professional Engineer, Multiple States in USA

Technical Expertise

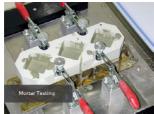
- Concrete and Concrete Durability Related Testing
 - Alkali-silica Reaction, Delayed Ettringite Formation, Freeze/Thaw, and Shrinkage
- Diagnosis and Repair of Structures which Suffer Premature Deterioration due to Concrete Durability Issues.
- Project Oversight for Numerous Global Projects
- Facilitate Laboratory Services and Testing to Engineering Application

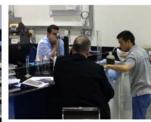
CTLGroup: Company Overview

- History
 - 1916 R&D lab for Portland Cement Association
 - 1987 Incorporated as a wholly owned subsidiary, Construction Technology Laboratories, Inc.
 - 2005 Diversified services and became internationally known as CTLGroup
- ▶ 110 employees
 - Engineers, architects, petrographers, and chemist
 - 25% have Ph.D. Degrees

www.CTLGroup.com

Company Overview – Laboratory Services


▶ 5,500 m² of laboratory facilities



Presentation Outline (1/2)

- Monday May 9, 2016:
 - (Introduction and Mixing)
 - · Introduction, Overview and Related Standards
 - ASTM C305 Practice for Mixing Pastes and Mortars
 - (Paste and Mortar Testing)
 - · ASTM C204 Fineness
 - · ASTM C1437 Flow
 - · ASTM C187 Normal Consistency
 - · ASTM C191 Time of Set
 - · ASTM C109 Compressive Strength of Cubes
 - · ASTM C185 Air Content of Cement Mortar
 - Discussion

3

Presentation Outline (2/2)

- Monday May 9, 2016 (Continued):
 - (Requirements of Standards)
 - · ASTM C150 Standard Specification for Portland Cement
 - · ASTM C989 Standard Specification for Slag Cement

www.CTLGroup.com

Learning Objectives

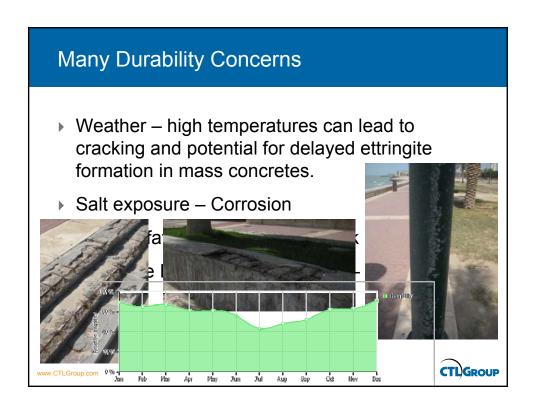
- Understand the reasons for conducting each test,
- Define terminology pertinent,
- Identify necessary equipment,
- Understand the sampling procedures,
- Understand limitations, and
- Witness demonstrations (videos).

How Reliable is Laboratory Testing? (and How Realistic is the Testing?)

- Lot's of tests don't resemble reality.
 - Some tests are too aggressive,
 - Some tests are not aggressive enough,
 - Some tests don't have any practical value, and
 - Some test have inherent flaws.

So, Why Do We Perform Standardized Tests?

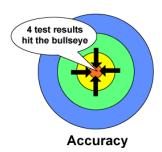
www.CTLGroup.com



Why Do We Perform Standardized Tests?

- ▶ The ultimate goal is to.....build buildings, bridges, roadways, and all concrete structures that are safe and durable.
- So, why do we run these tests...
 - To ensure uniformity of materials,
 - To check for potential material related failures prior to placing concrete,
 - Documentation for government representatives,
 - · Documentation for future problems, and
 - · Life Safety.

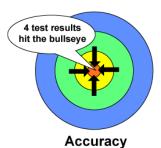
Why Do We Perform Standardized Tests?


▶ The goal is to make build buildings, bridges, roadways, and all concrete structures that are safe and durable.

www.CTLGroup.com

How Reliable is Laboratory Testing?

- Accuracy and Precision
 - Tell us how well the test method performs day to day in the laboratory, and
 - · are the cornerstone for reliability of your test results.



CTLGROUP

Ideally...

- We want test that are accurate and precise.
 - Accurate meaning they tell us the future of the concrete in the field, but
 - This is outside the scope of this presentation.

www.CTLGroup.com

So, We Will Focus on Precision.

- We will discuss the standards in detail, from the equipment to the nuisances of the testing procedures.
- So, that you can get precise results that are repeatable in your laboratory and amongst other laboratories.

area but miss

ay CTI Croup com

Other Ways to Improve Precision

- Address These Common Sources of Error
 - Follow the Procedures
 - Timing is Everything
 - User Dependency
 - Equipment
 - Laboratory Conditions
 - · Reading Standards

How Do We Prevent Mistakes?

- Quality Training
- Reading Standards and Practices
- Bad Habits are Passed Down
- Internal and External Audits
- Yearly Performance Evaluations
- ▶ Reading All <u>Related</u> Standards and Practices

vww.CTLGroup.com

Related ASTM Standards

- Commonly Overlooked, but VERY Important!
- ASTM C511 Mixing Room, Cabinets, Moist Rooms, and Water Storage Tanks
- ASTM C778 Standard Sand
- ASTM C1005 Reference Masses and Devices for Determining Mass and Volume
- ▶ ASTM D1193 Reagent Water

ASTM C511 – Mixing Room, Cabinets, Moist Rooms, and Water Storage Tanks (1/3)

- Scope: This specification includes requirements for <u>mixing rooms</u> where <u>paste</u> and <u>mortar</u> <u>specimens</u> are prepared; and for <u>moist cabinets</u>, <u>moist rooms</u>, and <u>water storage tanks</u> where <u>paste</u>, <u>mortar</u>, and <u>concrete specimens</u> are stored.
- Requirement of Cement Mixing Rooms:
 - Air in the vicinity of the mixing, molds, and base plates shall be maintained at 23.0 ± 4.0°C and at a relative humidity of not less than 50 %.

www.CTLGroup.com

ASTM C511 – Mixing Room, Cabinets, Moist Rooms, and Water Storage Tanks (2/3)

- Requirements for Moist Cabinets and Moist Rooms:
 - Specimens maintained at 23.0 ± 4.0°C and RH > 95%
 - Moist Cabinets: Relative humidity maintained by the use of fog sprays or curtains of water.
 - Moist Rooms for Cement Testing: prevent droplets of water from falling on the surfaces of freshly molded specimens.
 - Moist Rooms for Concrete Testing: specimens in storage both look moist and feel moist.

ASTM C511 – Mixing Room, Cabinets, Moist Rooms, and Water Storage Tanks (3/3)

Requirements for Water Storage Tanks:

- Maintain storage water temperature at 23.0 ± 2.0°C
- <u>Saturated with calcium hydroxide</u> to prevent leaching of calcium hydroxide from the specimens.
- Tanks shall be cleaned and refilled with water containing 3 g/L of calcium hydroxide at intervals not to exceed 24 months.

www.CTLGroup.com

ASTM C778 - Standard Sand

- Scope: This specification covers <u>standard</u> <u>sand</u> for use in the testing of <u>hydraulic</u> <u>cements</u>.
- 20–30 sand: standard sand, predominantly graded to pass a 850-μm (No. 20) sieve and be retained on a 600-μm (No. 30) sieve.
- ► <u>Graded sand</u>: standard sand, predominantly graded <u>between the 600-µm (No. 30) sieve</u> and the 150-µm (No. 100) sieve.

ASTM C778 – Standard Sand (2/2)

Sample: sample sand and check for air entrainment requirements and sieve analysis.

Total No. of Consecutive Bags in Shipment	No. of Bags to Test	Test in Consecutive No., the Following Bags
Sampling:		yg
less than 5	1	random
5 to 19	1	5th
20 to 34	2	5th and 20th
35 to 49	3	5th, 20th, and 35th
50 to 64	4	5th, 20th, 35th, and 50th
Resampling:		
less than 5	none	reject shipment
5 to 19	1	10th
20 to 34	2	10th and 25th
35 to 49	3	10th, 25th, and 40th
50 to 64	4	10th, 25th, 40th, and 55th

▶ Reject sands not meeting the requirements.

www.CTLGroup.com

ASTM C1005 – Reference Masses and Devices for Determining Mass and Volume (1/2)

- Scope: This specification cover the minimum requirements for <u>scales</u>, <u>balances</u>, <u>reference masses</u>, <u>and glass graduates</u> used in the physical testing of hydraulic cements.
- Requirement of Reference Masses:
 - Reference masses shall be used to verify balances daily.

ASTM C1005 – Reference Masses and Devices for Determining Mass and Volume (2/2)

Requirements for Scales and Balances:

- Capacity shall be at least equal to the maximum load
- Precision and Accuracy
 - Allowable tolerance 0.05% for balances with capacity greater than 3000g from 300 to 3000g
 - For balances with capacity less than 3000g, the tolerance shall be tested from 10% up to the capacity of the balance.

Requirements for Glass Graduates:

- · Suitable capacity for measuring paste and mortar water
- Permissible variation 100-150 mL allowed ± 1.0 mL
- Permissible variation 200-300 mL allowed ± 2.0 mL
- Divided at 5 mL increments

www.CTLGroup.com

ASTM D1193 - Reagent Water

- Scope: This specification describes the required characteristics of <u>waters</u> deemed suitable for use with the Standards under the jurisdiction of ASTM.
- Four types of water specified with three different grades (i.e. IA, IB, IC, 2A, etc.)
- Production Process: Purified, Distilled, Deionized, Electrodeionization (EDI), and Reverse Osmosis
- Limits: Electrical Conductivity, Electrical Resistivity, pH, Total Organic Carbon, Sodium Content, Chloride Content, and Hetertophic Bacteria Count
- Recommendations for Monitoring Water and Storage and Distribution of Water

	ГМ D1193 – Reagent Water										
Туре	Grade	Production Process ^{A,B,C,D}	μS/cm ^E (max)	MΩ-cm ^F (min)	PHe	TOC µg/L ^H (max)	Sodium µg/L/ (max)	Chloride µg/L ^{-/} (max)	Total Silica µg/L (max)	HBC ^K cfu/mL (max)	Endotoxin, EU/mL ² (max)
I		Purify to 20 µS/cm by dist. or equiv., followed by mixed bed DI, 0.2 µm filtration*	0.0555	18		50	1	1	3		
I	Α	Purify to 20 µS/cm by dist. or equiv., followed by mixed bed DI, 0.2 µm filtration*	0.0555	18		50	1	1	3	10/1000	0.03
I	В	Purify to 20 µS/cm by dist. or equiv., followed by mixed bed DI. 0.2 µm filtration ^A	0.0555	18		50	1	1	3	10/100	0.25
I	С	Purify to 20 µS/cm by dist. or equiv., followed by mixed bed DI. 0.2 µm filtration ⁴	0.0555	18		50	1	1	3	100/10	
II .		Distillation [®]	1.0	1.0		50	5	5	3		
II	Α	Distillation [®]	1.0	1.0		50	5	5	3	10/1000	0.03
ii	В	Distillation [®]	1.0	1.0		50	5	5	3	10/100	0.25
ii	č	Distillation [®]	1.0	1.0		50	5	5	3	100/10	0.2.0
iii			0.25	4.0		200	10	10	500		
III	Α	RO, followed by 0.45 µm filtration. [©]	0.25	4.0		200	10	10	500	10/1000	0.03
III	В	Distillation, DI, EDI, and/or RO, followed by 0.45 µm filtration. ^C	0.25	4.0		200	10	10	500	10/100	0.25
III	С	Distillation, DI, EDI, and/or RO, followed by 0.45 µm filtration. ^C	0.25	4.0		200	10	10	500	1000/100	
IV		Distillation, DI, EDI, and/or RO.D	5.0	0.2	5.0 to 8.0		50	50			
IV	A	RO. ^D	5.0	0.2	5.0 to 8.0		50	50		10/1000	0.03
IV	В	Distillation, DI, EDI, and/or RO.P	5.0	0.2	5.0 to 8.0		50	50		10/100	0.25
IV	С	Distillation, DI, EDI, and/or RO.D	5.0	0.2	5.0 to 8.0		50	50		100/10	

Summary

- Understanding Why We Perform Standardized Testing
- ▶ The Importance of the Testing
- Common Areas for Mistakes
- Related Technical Standards That Are Overlooked

Questions & Answers